在上述实施例中,导气管11和溶液输运管12的内部为矩形。诚然,在其它实施例中导气管11和溶液输运管12的内部也可以为圆形,导气管11和溶液输运管12矩形短边小于3mm,在实际实施过程中,导气管11矩形短边为2mm和溶液输运管12的矩形短边为1mm,导气管11和溶液输运管12的外壁为矩形在上述实施例中,高压静电装置5的正极与溶液输送管12连接,高压静电装置5的正极与接收装置4连接,溶液输送管12为金属管,溶液输送管12的数量为2根。在上述实施例中,接收装置4为滚筒式接收装置或平板式接收装置。在具体使用过程中,本实用新型通过控制喷头装置1的长度和内径来控制大分子的运输过程,喷头装置中的溶液输运管12的长度很长且极细窄,溶液在喷头装置中的运输过程变长,在溶液输运管12中靠近管壁的分子运动速度小于管中心处的分子运动,大分子8的运动速度从管壁到管中心逐渐增大(分子在管中的速度分布9),大分子8在溶液输运管12中喷头内部形成了长程持久的层流,管中的速度差使分子逐渐被拉直,从而变得有序,在气泡7中大分子8沿着气泡纵向有序的排列在气泡7中,使形成的纳米纤维中分子有序,有效的控制纳米纤维中分子的取向。当纺丝液泵进溶液输送管12后。影响静电纺丝的外部因素主要包括纺丝环境的温度和湿度、煅烧温度和升温速率、电压、溶液流速、固化距离。天津静电纺丝诚信合作
静电纺丝技术现状通过静电纺丝技术制备纳米纤维材料是近十几年来世界材料科学技术领域的重要的学术与技术活动之一。静电纺丝并以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控等优点,已成为有效制备纳米纤维材料的主要途径之一。静电纺丝技术已经制备了种类丰富的纳米纤维,包括有机、有机/无机复合和无机纳米纤维。然而,利用静电纺丝技术制备纳米纤维还面临一些需要解决的问题。首先,在制备有机纳米纤维方面,用于静电纺丝的天然高分子品种还十分有限,对所得产品结构和性能的研究不够完善,终产品的应用大都只处于实验阶段,尤其是这些产品的产业化生产还存在较大的问题。其次,静电纺有机/无机复合纳米纤维的性能不仅与纳米粒子的结构有关,还与纳米粒子的聚集方式和协同性能、聚合物基体的结构性能、粒子与基体的界面结构性能及加工复合工艺等有关。如何制备出适合需要的、高性能、多功能的复合纳米纤维是研究的关键。天津静电纺丝诚信合作静电纺丝过程中电压高低对纺丝结果的影响,表明电压的大小主要影响纺丝过程中纤维直径的大小。
氧化铝基陶瓷纤维因其高温稳定性好和抗拉强度高等优点,作为绝热防护材料和增强材料广泛应用于冶金、机械、航天、石油、化工等领域,其开发和应用一直是材料研究领域的热点[1-3]。纤维直径是氧化铝基陶瓷纤维的重要技术指标,减小纤维直径有利于获得绝热性与柔韧性更好的纤维制品,而且直径减小至纳米尺度的氧化铝基陶瓷纤维更是一类发展潜力巨大的功能材料[4-5]。然而,传统的陶瓷纤维生产工艺,如喷吹成丝法、甩丝法、挤压-拉丝法等均不能生产出直径在1μm以下的超细陶瓷纤维[6-7]。近年来,许多学者采用了静电纺丝与溶胶-凝胶法相结合的方法制备出了纳米级氧化铝基陶瓷纤维,其基本流程如下:将铝盐水解形成的铝溶胶与高分子聚合物助剂混合制成纺丝液,纺丝液经静电纺丝得到聚合物/无机溶胶复合纤维,复合纤维经过烧结得到纳米陶瓷纤维[8-10]。TANG等[11]以异丙醇铝为铝源采用静电纺丝法制得直径为60~90nm的α-氧化铝纤维,但纤维表面粗糙且存在大量微孔。ZADEH等[12]通过向纺丝液中添加不同用量聚乙烯醇制得直径为100~300nm的莫来石纤维,但该纤维中有大量珠链结构。TANRIVERDI等[13]以异丙醇铝、正硅酸乙酯和硼酸三乙酯为原料。
静电纺丝技术是目前制备超细纤维和纳米纤维**直接也是**基本的方法之一,由于通过静电纺丝技术所制备的纳米纤维具有超高的比表面积、极大长径比、高表面活性、优越的机械性能(**高韧)等特点,在纺织工程、环境工程、生物科技、医疗与卫生健康、能源贮存、***与反恐安全等不同领域都具有十分广阔的应用前景。但是由于制备的产品不同,纺丝使用的溶液各式各样,其性质各有差异。有时在溶液中添加一些材料试图对产品进行改性,但是由于材料自身的物理化学性质,不能在溶液中完全溶液,而是分散在溶液中,有些物质,例如mno2、碳纳米管(cnt)、石墨烯以及一些mof合成的粒子,在溶液中并不能很好得分散均匀,尤其是在纺丝过程中,溶液在储液管中静置,就会导致这些材料由于自身的重力作用在溶液中下沉,使溶液产生明显的分层现象,导致**后的产品性质分布不均匀。同时,有些溶液由于粘度太高,在静置纺丝中,溶液容易堵住针头,阻碍纺丝的正常进行。静电纺丝溶液的导电性能主要取决于溶液中的各种成分的导电性,例如聚合物类型、可电离的盐和溶剂的类型等。
如果可以在大分子尺度上控制纺丝过程,提高其结晶度,那么对控制纤维形态、调节纤维的机械、电子和化学性能具有重要意义。针对上述问题,有必要提供一种纺丝过程中纳米纤维中大分子有序控制的装置。技术实现要素:本实用新型的目的在于提供一种能够对纺丝过程中纳米纤维中大分子有序控制的有序控制的纳米纤维分子排序的气泡静电纺丝装置。为达到上述目的,本实用新型提供如下技术方案:一种有序控制纳米纤维分子排序的气泡静电纺丝装置包括喷头装置、注射装置、气泵装置、接收装置和高压静电装置,所述喷头装置包括导气管和设置在所述导气管两侧的溶液输送管,所述注射装置与所述溶液输送管连接,所述气泵装置与所述导气管连接,所述高压静电装置分别与所述喷头装置及所述接收装置连接,所述导气管的高度低于所述溶液输送管的高度,所述溶液输送管的高度不少于10cm。进一步地,所述有序控制纳米纤维分子排序的气泡静电纺丝装置包括设置在所述溶液输送管外侧的延伸部,所述延伸部内开设有以所述导气管的轴线为轴对称设置的导气通道,两侧的导气通道的延长线的交点在所述导气管的轴线上,所述导气通道被定义有进气口和出气口,所述出气口朝向所述溶液输送管。进一步地。静电纺丝法制备的纳米纤维应用于物理性污染领域的研究也有报道,包括减声降噪、电磁污染控制方面等。品质静电纺丝诚信推荐
静电纺丝法的内部影响因素主要由溶液的各项参数造成,例如溶液的粘度,导电性能和表面张力。天津静电纺丝诚信合作
采用静电纺丝法制得直径为100~700nm的氧化铝基纤维产品,但该纤维形状不规则且纤维之间黏连现象严重。ZHANG等[14]通过掺杂SiO2和CaO来调控静电纺丝所制备氧化铝纤维的结构和性能,他们发现添加氧化物对纤维形态影响明显,**终得纤维直径为200~1000nm,表面多褶皱,SiO2和CaO的加入使纤维从片层结构变成颗粒聚集结构。总的来说,氧化铝基陶瓷纤维的静电纺丝研究起步较晚,人们对静电纺丝技术制备质量超细氧化铝基纤维的研究较少,其工艺条件对纤维质量和性能的影响有待深入研究。对此,本文作者以正硅酸乙酯(TEOS)和添加硼酸作为稳定剂的次乙酸铝(BAA)为原料,采用静电纺丝工艺制备形貌良好的超细氧化铝基陶瓷纤维产品,并研究纺丝液性质和烧结温度等对静电纺丝制备超细氧化铝基纤维的影响规律。性能表征纺丝液的电导率通过DDS-11A数显电导率仪获得,表面张力由CNSHPBZY-2型全自动表面张力仪测量,黏度特性由AR2000EX型旋转流变仪在恒温25℃条件下进行分析;通过NovaNano230型扫描电子显微镜和JEM-2100F型透射电子显微镜对纤维的微观结构进行表征;用STA449C型热分析仪对纺成纤维的热分解特性和晶化行为进行研究;利用RigakuD/max2500型X线衍射仪确定烧结纤维的物相组成。天津静电纺丝诚信合作
江苏飙鲛新材料科技有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在江苏省等地区的机械及行业设备行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为行业的翘楚,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将引领江苏飙鲛新材料科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!